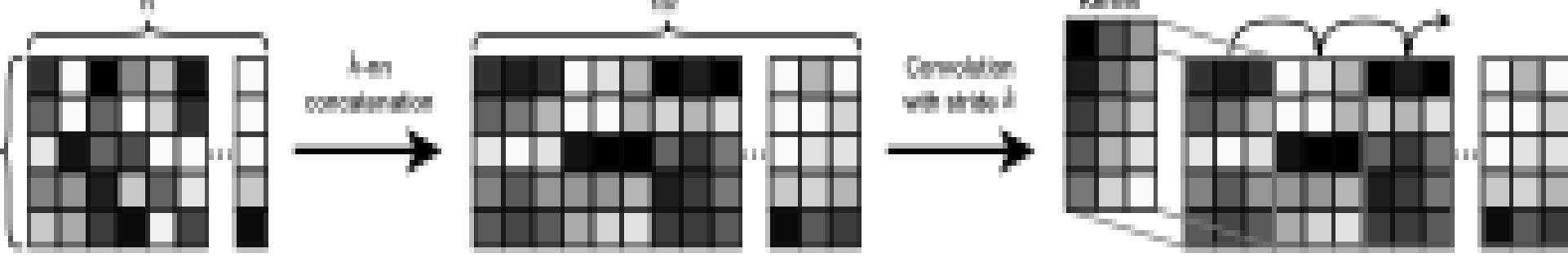


INTRODUCTION

- Convolutional Nearest Neighbor (ConvNN)** reinterprets convolution as k-nearest neighbor aggregation with flexible neighbor selection criteria.
- Standard convolution implicitly performs k-NN with fixed spatial distance (e.g., 3x3 kernel = k = 9 spatially-adjacent neighbors including self).
- ConvNN generalizes this by allowing neighbor selection based on:
 - Spatial distance (reduces to standard convolution)
 - Feature similarity (cosine/Euclidean)
 - Hybrid spatial-feature metrics
- Core Algorithm of ConvNN:
 - Compute pairwise similarities between all spatial positions
 - Select k-nearest neighbors per position via hard top-k
 - Aggregate neighbors with learnable weights (1D convolution)

BASE ALGORITHM

ConvNN Visualization



1. Similarity Computation

$$S = XX^T \in \mathbb{R}^{n \times n} \text{ where } S_{ij} = x_i^T x_j$$

2. K-Nearest Neighbor Selection

$$I_k = k-\text{argmax}(XX^T) \in \mathbb{R}^{n \times n}$$

$$\text{Neighbors} = X[I_k[i, :], :] \in \mathbb{R}^{k \times n}$$

Algorithm 1 Convolutional Nearest Neighbors ID

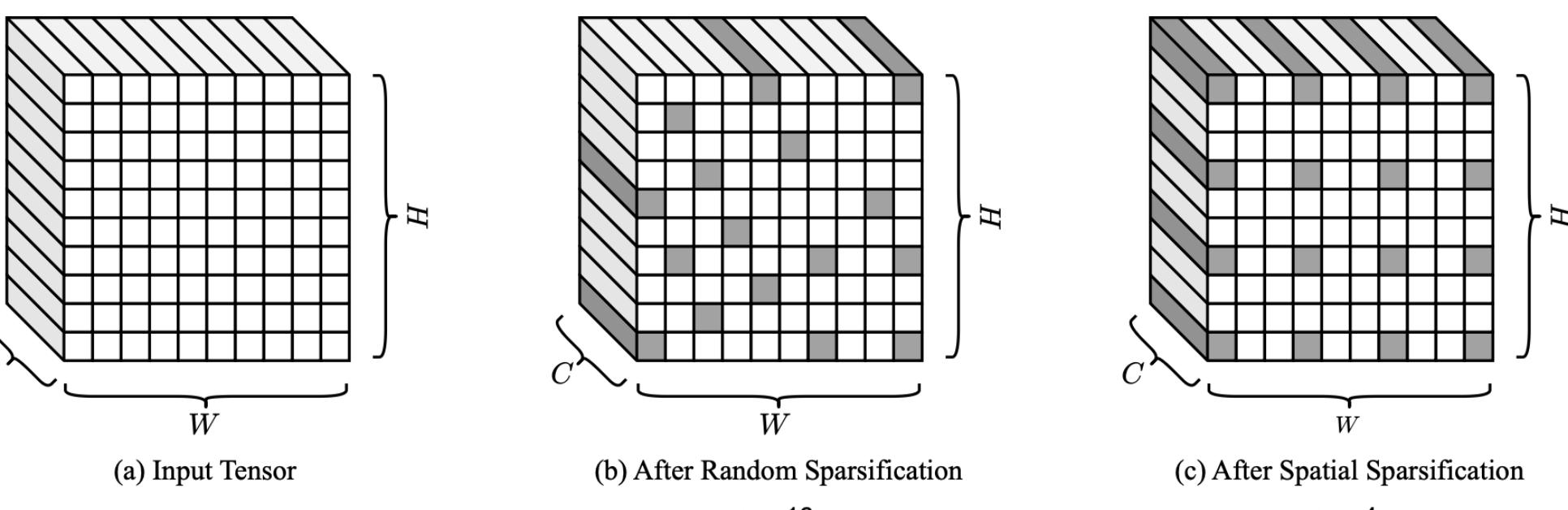
```

Input:  $X \in \mathbb{R}^{B \times C \times N}$  (batch  $\times$  channels  $\times$  tokens)
Parameters:  $k$  (number of neighbors)
Output:  $Y \in \mathbb{R}^{B \times C' \times N}$ 

1: // For each batch element
2: Let  $X = X[b, :, :]^T \in \mathbb{R}^{N \times C}$  with columns  $\mathcal{X} = \{x_i\}_{i=1}^N$ 
3:
4: // Step 1: Compute similarity matrix
5: Assume each  $x_i$  is  $\ell_2$ -normalized:  $\|x_i\|_2 = 1$ 
6: Compute similarity:  $S = XX^T \in \mathbb{R}^{N \times N}$  where  $S_{ij} = x_i^T x_j$ 
7:
8: // Step 2: Find k-nearest neighbors
9:  $I_k = \text{argmax}_k(S) \in \{0, 1\}^{N \times N}$ 
10:
11: // Step 3: Gather features
12: for  $i \in [1, N]$  do
13:    $\mathcal{N}_k(x_i) = X[I_k[i, :, :] \in \mathbb{R}^{k \times C}$ 
14:    $\mathbf{V}_{\text{prime}}[:, i \cdot k : (i + 1) \cdot k] = \mathcal{N}_k(x_i)^T$ 
15: end for
16:
17: // Step 4: Convolve
18:  $Y = \text{Conv1D}(\mathbf{V}_{\text{prime}}, \text{kernel\_size} = k, \text{stride} = k)$ 
19:
20: return  $Y$ 

```

SIMILARITY COMPUTATION SPEED-UPS



- To reduce $O(N^2)$ complexity of all to all similarity computation, we introduce two sampling methods: Random and Spatial Sparsification.
- Trade-off between computational efficiency and neighbor selection quality is controlled by sampling parameter n (number of pixel sampled).

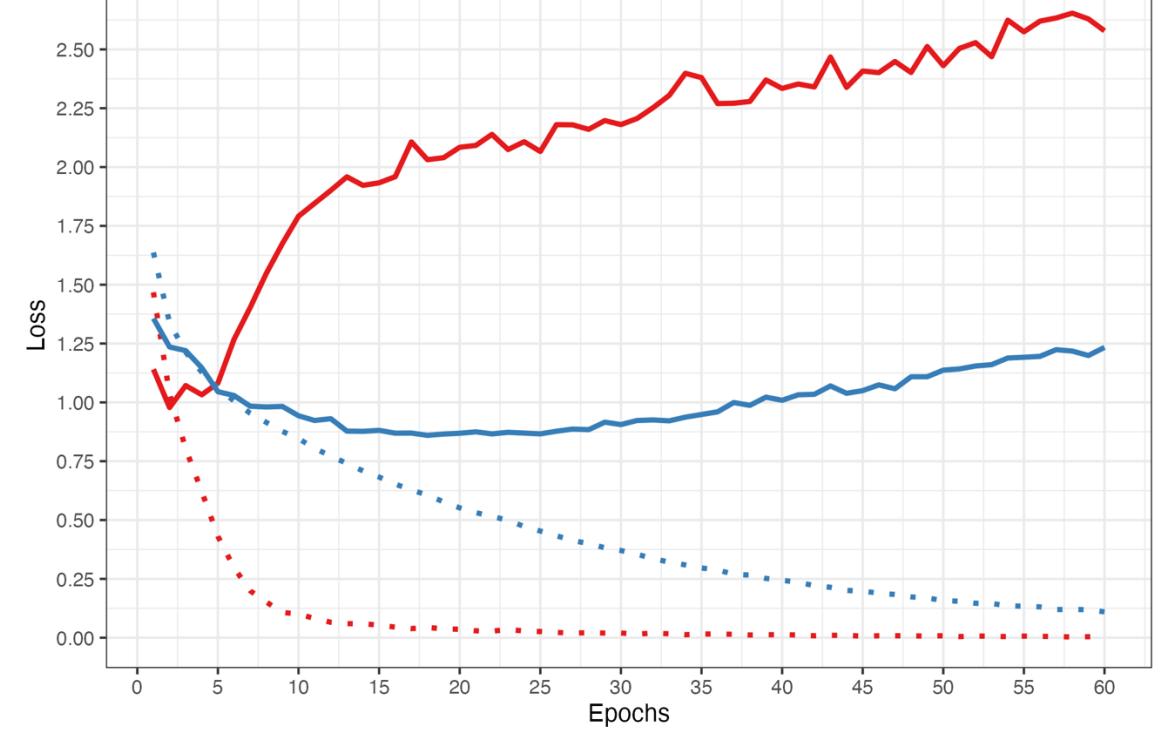
ARCHITECTURE AND TRAINING

- Architecture:** VGG-11 with Conv2d layers replaced by ConvNN and branching layers
- Dataset:** CIFAR-10 image classification
- Training:** 60 epochs with AdamW ($\text{lr}=1e-5$, $\text{wd}=1e-6$), StepLR scheduler ($\text{gamma}=0.95$, $\text{step}=2$)
- Variants tested:**
 - Location-only (spatial distance)
 - Feature-only (cosine similarity)
 - Hybrid (weighted combination)
 - Branching with ratio (e.g., 50% Conv2d + 50% ConvNN)

RESULTS

Training and Test Loss

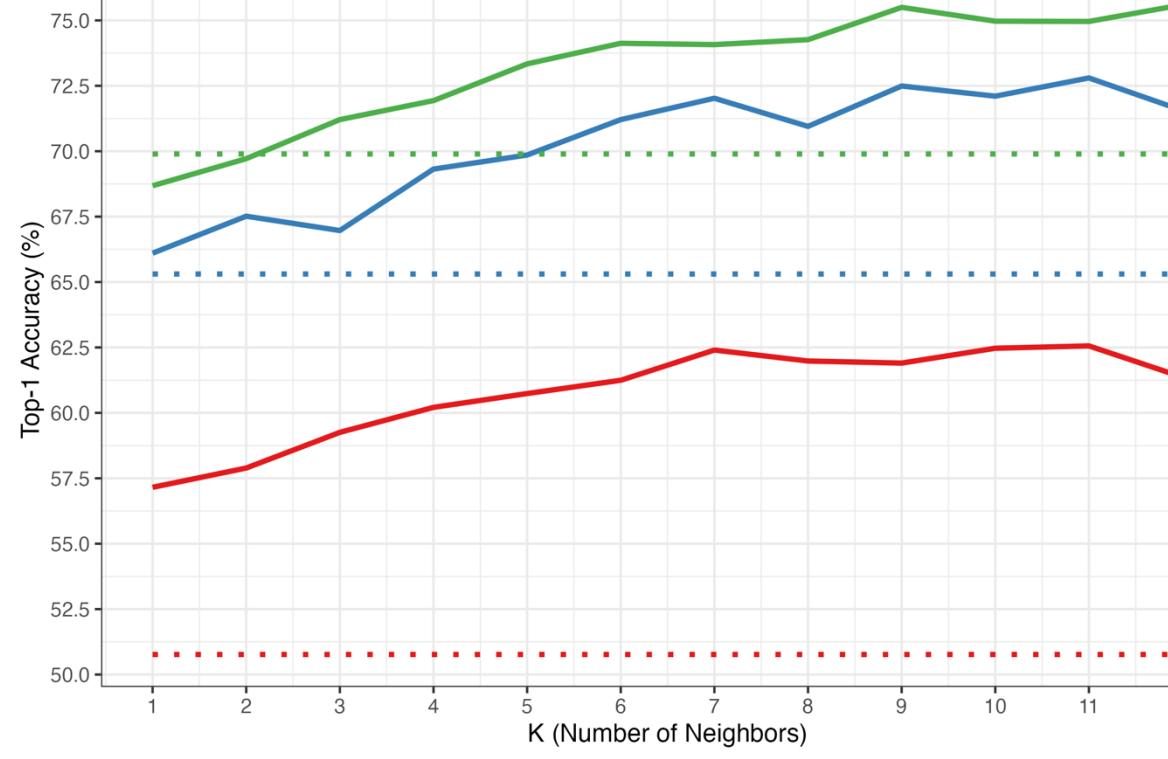
Comparison of Conv2d and Branching ConvNN



Branching ConvNN = Branching with branching ratio 0.500, kernel_size = 3, K = 9, Feature Similarity, and Aggregation.

Model Accuracy by Kernel Size and Type

Comparison of Conv2d and Branching ConvNN



Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation.

Model Performance vs. N

Top-1 Accuracy for Random and Spatial Sampling Methods

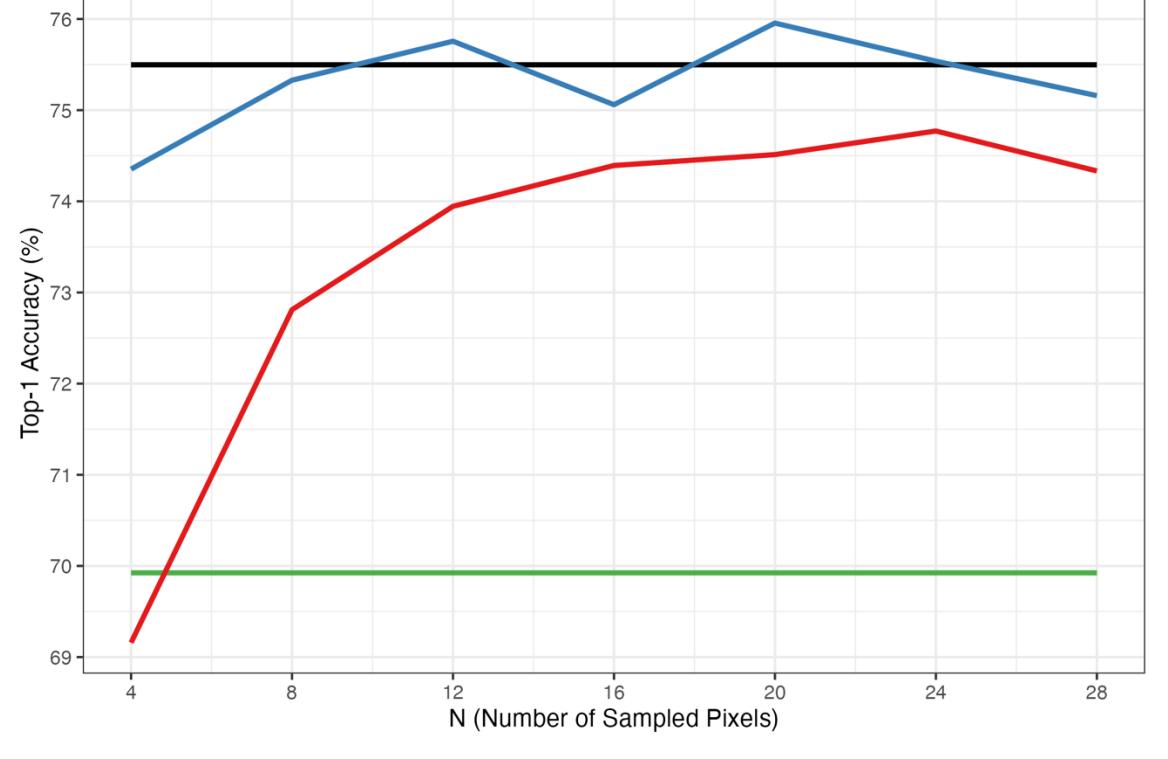
Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation. Spatial Sampling = $N = N \times N$ sub grid 3, Random Sampling = N^2 pixels. Note: The Random (blue dashed) line is slightly offset vertically for visibility.

Table 1: CIFAR10 ConvNN Branching Ratio (Color Similarity and Color Aggregation)

Models	Branching Ratio (λ)	Params	Top-1 Acc.	Test Loss	GFlops
Conv2d	0.000	130.015M	69.78%	2.57	0.293
Branching	0.125	130.015M	73.49%	1.81	0.325
Branching	0.250	130.015M	74.32%	1.56	0.325
Branching	0.500	130.015M	73.61%	1.23	0.325
Branching	0.750	130.015M	68.63%	1.23	0.325
Branching	0.875	130.015M	65.66%	1.33	0.325
ConvNN	1.000	130.015M	50.250%	1.84	0.325

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN)

Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Table 2: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Color Aggregation)

Models	Branching Ratio (λ)	Params	Top-1 Acc.	Test Loss	GFlops
Conv2d	0.000	130.015M	69.78%	2.57	0.293
Branching	0.125	130.015M	72.92%	1.92	0.331
Branching	0.250	130.015M	74.20%	1.52	0.331
Branching	0.500	130.015M	73.16%	1.24	0.331
Branching	0.750	130.015M	69.98%	1.22	0.331
Branching	0.875	130.015M	64.77%	1.33	0.331
ConvNN	1.000	130.015M	52.70%	1.80	0.331

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN)

Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Table 3: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Location + Color Aggregation)

Models	Branching Ratio (λ)	Params	Top-1 Acc.	Test Loss	GFlops
Conv2d	0.000	130.015M	69.78%	2.57	0.293
Branching	0.125	130.021M	73.75%	1.85	0.331
Branching	0.250	130.028M	75.22%	1.46	0.331
Branching	0.500	130.040M	74.52%	1.17	0.331
Branching	0.750	130.052M	69.49%	1.15	0.331
Branching	0.875	130.059M	66.14%	1.25	0.325
ConvNN	1.000	130.065M	60.09%	1.44	0.325

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN)

Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Computational Cost (GFlops) vs. N

Comparison of Random and Spatial Sampling Methods

Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation. Spatial Sampling = $N = N \times N$ sub grid 3, Random Sampling = N^2 pixels.

CONVOLUTION AND ATTENTION

1. Convolution

$$S = D = 2(1 - X^T X) \in \mathbb{R}^{n \times n} \text{ where } D_{ij} = \|x_i - x_j\|_2^2 = 2(1 - x_i^T x_j)$$

$$I_k = k-\text{argmax}(2(1 - X^T X)) \in \mathbb{R}^{n \times n}$$

$$\text{Neighbors} = X[I_k[i, :, :] \in \mathbb{R}^{k \times n}$$

2. Convolutional Nearest Neighbor

$$S = XX^T \in \mathbb{R}^{n \times n} \text{ where } S_{ij} = x_i^T x_j$$

$$I_k = k-\text{argmax}(XX^T) \in \mathbb{R}^{n \times n}$$

$$\text{Neighbors} = X[I_k[i, :, :] \in \mathbb{R}^{k \times n}$$

3. Attention

$$QK^T \in \mathbb{R}^{n \times n} \text{ where } Q = w_Q X, K = w_K X$$

$$A(Q, K) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) \in \mathbb{R}^{n \times n}$$

$$\text{Attention}(Q, K, V) = A(Q, K)V \text{ where } V = w_V X$$

DISCUSSION

- Hybrid similarity** (spatial + feature) outperforms pure spatial or pure feature selection
- Branching architecture** achieves best performance by combining ConvNN's global context with Conv2d's spatial locality.
- ConvNN unifies convolution and attention as neighbor aggregation differ:
 - Spatial-only \rightarrow standard convolution
 - All positions with soft weights with linear projection \rightarrow self-attention
 - ConvNN occupies the middle ground with hard, content-aware selection
- Feature work:** Extend to Vision Transformers, explore learnable similarity metrics, investigate soft vs. hard selection.

REFERENCES

- A. Buades, B. Coll and J. M. Morel, "A non-local algorithm for image denoising," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 60-65 vol. 2, doi: 10.1109/CVPR.2005.38.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014).
- Plotz, Tobias, and Stefan Roth. "Neural nearest neighbors networks." *Advances in Neural Information Processing Systems* 31 (2018).
- Wang, Xiaolong, et al. "Non-local neural networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.
- Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).