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INTRODUCTION

Convolutional Nearest Neighbors:

Convolutional Nearest Neighbor (ConvNN) reinterprets convolution as k-nearest

neighbor aggregation with flexible neighbor selection criteria.

® Standard convolution implicitly performs k-NN with fixed spatial distance (e.g., 3x3

kernel = k =9 spatially-adjacent neighbors including self).

ConvNN generalizes this by allowing neighbor selection based on:
® Spatial distance (reduces to standard convolution)
® Feature similarity (cosine/Euclidean)
® Hybrid spatial-feature metrics
Core Algorithm of ConvNN:
1. Compute pairwise similarities between all spatial positions
2. Select k-nearest neighbors per position via hard top-k

3. Aggregate neighbors with learnable weights (1D convolution)
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Branching ConvNN = Branching with branching ratio 0.500, kernel_size = 3, K =9, Feature Similarity and Aggregation.

Model Accuracy by Kernel Size and Type

Comparison of Conv2d and Branching ConvNN
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Reinterpreting Convolution Through K-Nearest Neighbor Selection

Table 1: CIFAR10 ConvNN Branching Ratio (Color Similarity and Color Aggregation)

Models | Branching Ratio () | Params | Top-1 Acc. | Test Loss | GFlops
Conv2d | 0.000 [ 130.015M | 69.78% | 257 | 0.203
Branching | 0.125 130.015M | 73.49% 1.81 0.325
Branching | 0.250 130.015M | 74.32% 1.56 0.325
Branching | 0.500 130.0156M | 73.61% 1.23 0.325
Branching | 0.750 130.015M | 68.63% 1.23 0.325
Branching | 0.875 130.015M | 65.66% 1.33 0.325
ConvNN | 1.000 | 130.015M | 50.250% | 1.84 | 0.325

VGG 11 Architecture with kernel_size = 3 (Conv2d), K =9 (ConvNN)

Branching Models: A x ConvNN + (1 — A) x Conv2d

Table 2: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Color

Aggregation)

Models | Branching Ratio () | Params | Top-1 Acc. | Test Loss | GFlops
Conv2d | 0.000 130.015M | 69.78% | 257 | 0.203
Branching | 0.125 130.015M | 72.92% 1.92 0.331
Branching | 0.250 130.0156M | 74.20% 1.52 0.331
Branching | 0.500 130.015M | 73.16% 1.24 0.331
Branching | 0.750 130.015M | 69.98% 1.22 0.331
Branching | 0.875 130.0156M | 64.77% 1.33 0.331
ConyNN | 1.000 | 130.015M | 52.70% | 1.80 | 0.331

VGG 11 Architecture with kernel_size = 3 (Conv2d), K =9 (ConvNN)
Branching Models: A x ConvNN + (1 — A) x Conv2d

Table 3: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Loca-

tion + Color Aggregation)

—’- g _ Models | Branching Ratio (A) | Params | Top-1 Acc. | Test Loss | GFlops
< femel Size Comv2d | 0.000 | 130.015M | 69.78% | 257 | 0.293
Ch — 2 Branching | 0.125 130.021M | 73.75% | 1.85 0.331
57.5 1 -3 Branching | 0.250 130.028M | 75.22% 1.46 0.331
. . . . Branching | 0.500 130.040M | 74.52% 1.17 0.331
1. Similarity Computation 5501 Branching | 0.750 130.052M | 69.49% 1.15 0.331
s Branching | 0.875 130.050M | 66.14% 1.25 0.325
¢ = xxT € R where S.. = X-TX- I A 08 K ) i e R et R, O R ConvNN | 1.000 | 130.065M | 60.09% | 144 | 0.325
L] 1 %) I A " wosl VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN)
d Branching Models: A x ConvNN + (1 — A) x Conv2d
2 K Nearest Neighbor Selection Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation.
- Model Performance vs. N Computational Cost (GFlops) vs. N
I, = k—argmax (XX ) e R Top-1 Accuracy for Random and Spatial Sampling Methods Comparison of Random and Spatial Sampling Methods
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Algorithm 1 Convolutional Nearest Neighbors 1D 2 Jomping Hehos Jomping Method
273 = All Samples Q eatures
Input: X € REXCXN (batch x channels x tokens) 3 — conag asene) 2 — Convzd (baseline)
Parameters: & (number of neighbors) 5 721 — Random (\'2) " - fandem @
Output: Y € RBEXC'*xN . e o
1: // For each batch element ! oo
2: Let X = X[b,:,:]" € RV*? with columns X = {x;}¥, o] /
3:
4: [/ Step 1: Compute similarity matrix 69{ i . . | . . ; ; g pe 5 5 g
5: Assume eaCh X?, iS Ez-normalized. ||)('71||2 — 1 ' i 1:" (Number of éaamp[ed PiXE|52)O : " " (II\\llgtT?'iLz;wsdirr:F()tlni(: (I:ai:heelcsi))line is slightly offset vertically for visibility.
6: Compute Slmllarlt}" S = .XXT - RNXN where S@j = X;I—X_j Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation. Spatial Sampling= N = N x N sub grid 3, Random Sampling = N2 pixels.
7
8: // Step 2: Find k-nearest neighbors
. — NXxXN
9 I = argmazy(S) € {0,1) CONVOLUTION AND ATTENTION
11: // Step 3: Gather features
12: fori € [1,N]do ; 1. Convolution
13: Ni(x;) = X [Ii[i, 1], :] € REX , T
. R PR _ AT _ _ _ —
14: Viprimels, ik (i+1) - k] = Ny (%)) S=D= 21— X"X) e R™"whereD;; =l x; — x; 15 = 2(1 — X' X;)
15: end for L 1 ) 1)
16:
17: // Step 4: Convolve — _ T nxn
18: Y = ConvlD(V ,,ime, kernel_size = k, stride = k) Ik K argmax(Z (1 X X)) €R
19:
20: return Y

Neighbors = X[I.[i,:],:] € RN

2. Convolutional Nearest Neighbor

S = XXT (S Rnxn where Sl] — XiTXj

SIMILARITY COMPUTATION SPEED-UPS

I, = k—argmax(XX") € R**"
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Neighbors = X[I.[i,:],:] € RN

3. Attention

AN PN RN :

W W W QK" € R™" where Q = wgX, K = wiX
(a) Input Tensor (b) After Random Sparsification (c) After Spatial Sparsification

n=16 n=4 K-I—

A(Q,K) SOftmaX(Q—) e ROXN
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Attention(Q,K,V) = A(Q,K)V whereV = w X

® To reduce 0(N?) complexity of all to all similarity computation, we introduce two —
sampling methods: Random and Spatial Sparsification.
® Trade-off between computational efficiency and neighbor selection quality is

controlled by sampling parameter n (number of pixel sampled).

ARCHITECTURE AND TRAINING

DISCUSSION

* Hybrid similarity (spatial + feature) outperforms pure spatial or pure feature selection

® Architecture: VGG-11 with Conv2d layers replaced by ConvNN and branching layers

® Dataset: CIFAR-10 image classification * Branching architecture achieves best performance by combining ConvNN'’s global context with Conv2d’s

® Training: 60 epochs with AdamW (Ir=1e-5, wd=1e-6), StepLR scheduler spatial locality.

(8amma=0.95, step=2) * ConvNN unifies convolution and attention as neighbor aggregation differ:
® Variants tested: * Spatial-only - standard convolution
® Location-only (spatial distance) o

All positions with soft weights with linear projection — self-attention

® Feature-onl ' imilarit : i i '
eature-only (cosine similarity) * ConvNN occupies the middle ground with hard, content-aware selection

® Hybrid (weighted combination)

* Feature work: Extend to Vision Transformers, explore learnable similarity metrics, investigate soft vs. hard
® Branching with ratio (e.g., 50% Conv2d + 50% ConvNN) P y 8

selection.
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