Bowdoin

INTRODUCTION

Convolutional Nearest Neighbors:

Convolutional Nearest Neighbor (ConvNN) reinterprets convolution as k-nearest

neighbor aggregation with flexible neighbor selection criteria.

® Standard convolution implicitly performs k-NN with fixed spatial distance (e.g., 3x3

kernel = k =9 spatially-adjacent neighbors including self).

ConvNN generalizes this by allowing neighbor selection based on:
® Spatial distance (reduces to standard convolution)
® Feature similarity (cosine/Euclidean)
® Hybrid spatial-feature metrics
Core Algorithm of ConvNN:
1. Compute pairwise similarities between all spatial positions
2. Select k-nearest neighbors per position via hard top-k

3. Aggregate neighbors with learnable weights (1D convolution)

BASE ALGORITHM

Mingi Kang, Jeova Farias Ph.D.

ConvNN Visualization

- ol P

el L]

%)

Bowdoin College, ME

RESULTS

Training and Test Loss
Comparison of Conv2d and Branching ConvNN

Loss Type
— Test

= Train

Model

= Conv2d

=== Branching ConvNN

oo .

Branching ConvNN = Branching with branching ratio 0.500, kernel_size = 3, K =9, Feature Similarity and Aggregation.

Model Accuracy by Kernel Size and Type

Comparison of Conv2d and Branching ConvNN

75.0 1 - —
72.54

70.0 A

Model Type

67.54 .
== Branching ConvNN

= Standard Conv2d

@
o
o

Reinterpreting Convolution Through K-Nearest Neighbor Selection

Table 1: CIFAR10 ConvNN Branching Ratio (Color Similarity and Color Aggregation)

Models | Branching Ratio () | Params | Top-1 Acc. | Test Loss | GFlops
Conv2d | 0.000 [130.015M | 69.78% | 257 | 0.203
Branching | 0.125 130.015M | 73.49% 1.81 0.325
Branching | 0.250 130.015M | 74.32% 1.56 0.325
Branching | 0.500 130.0156M | 73.61% 1.23 0.325
Branching | 0.750 130.015M | 68.63% 1.23 0.325
Branching | 0.875 130.015M | 65.66% 1.33 0.325
ConvNN | 1.000 | 130.015M | 50.250% | 1.84 | 0.325

VGG 11 Architecture with kernel_size = 3 (Conv2d), K =9 (ConvNN)

Branching Models: A x ConvNN + (1 — A) x Conv2d

Table 2: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Color

Aggregation)

Models | Branching Ratio () | Params | Top-1 Acc. | Test Loss | GFlops
Conv2d | 0.000 130.015M | 69.78% | 257 | 0.203
Branching | 0.125 130.015M | 72.92% 1.92 0.331
Branching | 0.250 130.0156M | 74.20% 1.52 0.331
Branching | 0.500 130.015M | 73.16% 1.24 0.331
Branching | 0.750 130.015M | 69.98% 1.22 0.331
Branching | 0.875 130.0156M | 64.77% 1.33 0.331
ConyNN | 1.000 | 130.015M | 52.70% | 1.80 | 0.331

VGG 11 Architecture with kernel_size = 3 (Conv2d), K =9 (ConvNN)
Branching Models: A x ConvNN + (1 — A) x Conv2d

Table 3: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Loca-

tion + Color Aggregation)

—’- g _ Models | Branching Ratio (A) | Params | Top-1 Acc. | Test Loss | GFlops
< femel Size Comv2d | 0.000 | 130.015M | 69.78% | 257 | 0.293
Ch — 2 Branching | 0.125 130.021M | 73.75% | 1.85 0.331
57.5 1 -3 Branching | 0.250 130.028M | 75.22% 1.46 0.331
. . . . Branching | 0.500 130.040M | 74.52% 1.17 0.331
1. Similarity Computation 5501 Branching | 0.750 130.052M | 69.49% 1.15 0.331
s Branching | 0.875 130.050M | 66.14% 1.25 0.325
¢ = xxT € R where S.. = X-TX- I A 08 K) i e R et R, O R ConvNN | 1.000 | 130.065M | 60.09% | 144 | 0.325
L] 1 %) I A " wosl VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN)
d Branching Models: A x ConvNN + (1 — A) x Conv2d
2 K Nearest Neighbor Selection Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation.
- Model Performance vs. N Computational Cost (GFlops) vs. N
I, = k—argmax (XX) e R Top-1 Accuracy for Random and Spatial Sampling Methods Comparison of Random and Spatial Sampling Methods
. _ . . 5 N 0.334
Neighbors = X[I.[i,:],:] € RN /\/
Algorithm 1 Convolutional Nearest Neighbors 1D 2 Jomping Hehos Jomping Method
273 = All Samples Q eatures
Input: X € REXCXN (batch x channels x tokens) 3 — conag asene) 2 — Convzd (baseline)
Parameters: & (number of neighbors) 5 721 — Random (\'2) " - fandem @
Output: Y € RBEXC'*xN . e o
1: // For each batch element ! oo
2: Let X = X[b,:,:]" € RV*? with columns X = {x;}¥, o] /
3:
4: [/ Step 1: Compute similarity matrix 69{ i . . | . . ; ; g pe 5 5 g
5: Assume eaCh X?, iS Ez-normalized. ||)('71||2 — 1 ' i 1:" (Number of éaamp[ed PiXE|52)O : " " (II\\llgtT?'iLz;wsdirr:F()tlni(: (I:ai:heelcsi))line is slightly offset vertically for visibility.
6: Compute Slmllarlt}" S = .XXT - RNXN where S@j = X;I—X_j Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation. Spatial Sampling= N = N x N sub grid 3, Random Sampling = N2 pixels.
7
8: // Step 2: Find k-nearest neighbors
. — NXxXN
9 I = argmazy(S) € {0,1) CONVOLUTION AND ATTENTION
11: // Step 3: Gather features
12: fori € [1,N]do ; 1. Convolution
13: Ni(x;) = X [Ii[i, 1], :] € REX , T
. R PR _ AT _ _ _ —
14: Viprimels, ik (i+1) - k] = Ny (%)) S=D= 21— X"X) e R™"whereD;; =l x; — x; 15 = 2(1 — X' X;)
15: end for L 1) 1)
16:
17: // Step 4: Convolve — _ T nxn
18: Y = ConvlD(V ,,ime, kernel_size = k, stride = k) Ik K argmax(Z (1 X X)) €R
19:
20: return Y

Neighbors = X[I.[i,:],:] € RN

2. Convolutional Nearest Neighbor

S = XXT (S Rnxn where Sl] — XiTXj

SIMILARITY COMPUTATION SPEED-UPS

I, = k—argmax(XX") € R**"

T

- s

Neighbors = X[I.[i,:],:] € RN

3. Attention

AN PN RN :

W W W QK" € R™" where Q = wgX, K = wiX
(a) Input Tensor (b) After Random Sparsification (c) After Spatial Sparsification

n=16 n=4 K-I—

A(Q,K) SOftmaX(Q—) e ROXN

Jan

Attention(Q,K,V) = A(Q,K)V whereV = w X

® To reduce 0(N?) complexity of all to all similarity computation, we introduce two —
sampling methods: Random and Spatial Sparsification.
® Trade-off between computational efficiency and neighbor selection quality is

controlled by sampling parameter n (number of pixel sampled).

ARCHITECTURE AND TRAINING

DISCUSSION

* Hybrid similarity (spatial + feature) outperforms pure spatial or pure feature selection

® Architecture: VGG-11 with Conv2d layers replaced by ConvNN and branching layers

® Dataset: CIFAR-10 image classification * Branching architecture achieves best performance by combining ConvNN'’s global context with Conv2d’s

® Training: 60 epochs with AdamW (Ir=1e-5, wd=1e-6), StepLR scheduler spatial locality.

(8amma=0.95, step=2) * ConvNN unifies convolution and attention as neighbor aggregation differ:
® Variants tested: * Spatial-only - standard convolution
® Location-only (spatial distance) o

All positions with soft weights with linear projection — self-attention

® Feature-onl ' imilarit : i i '
eature-only (cosine similarity) * ConvNN occupies the middle ground with hard, content-aware selection

® Hybrid (weighted combination)

* Feature work: Extend to Vision Transformers, explore learnable similarity metrics, investigate soft vs. hard
® Branching with ratio (e.g., 50% Conv2d + 50% ConvNN) P y 8

selection.

REFERENCES

® A.Buades, B. Colland J. . -M. Morel, "A non-local algorithm forimage denoising," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 60-65 vol. 2, doi: 10.1109/CVPR.2005.38.
® Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).Pl6tz, Tobias, and Stefan Roth. "Neural nearest neighbors networks." Advances in Neural information
processing systems 31 (2018).

Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

Vaswani, Ashish, et al. "Attention is allyou need." Advances in neuralinformation processing systems 30 (2017).

	Slide 1: Convolutional Nearest Neighbors: Reinterpreting Convolution Through K-Nearest Neighbor Selection

